Math, asked by Babaram, 11 months ago

prove Pythagoras theorem​

Answers

Answered by nazishqarnain
3

Answer:

Step-by-step explanation:

States that in a right triangle that, the square of a (a2) plus the square of b (b2) is equal to the square of c (c2).

In short it is written as: a2 + b2 = c2

Proof of Pythagoras Theorem

0Save

Let QR = a, RP = b and PQ = c. Now, draw a square WXYZ of side (b + c). Take points E, F, G, H on sides WX, XY, YZ and ZW respectively such that WE = XF = YG = ZH = b.

Verification of Pythagorean Theorem

0Save

Then, we will get 4 right-angled triangle, hypotenuse of each of them is ‘a’: remaining sides of each of them are band c. Remaining part of the figure is the

square EFGH, each of whose side is a, so area of the square EFGH is a2.

Now, we are sure that square WXYZ = square EFGH + 4 ∆ GYF

or, (b + c)2 = a2 + 4 ∙ 1/2 b ∙ c

or, b2 + c2 + 2bc = a2 + 2bc

or, b2 + c2 = a2

Proof of Pythagorean Theorem using Algebra:

Proof of Pythagorean TheoremGiven: A ∆ XYZ in which ∠XYZ = 90°.

To prove: XZ2 = XY2 + YZ2

Construction: Draw YO ⊥ XZ

Proof: In ∆XOY and ∆XYZ, we have,

∠X = ∠X → common

∠XOY = ∠XYZ → each equal to 90°

Therefore, ∆ XOY ~ ∆ XYZ → by AA-similarity

⇒ XO/XY = XY/XZ

⇒ XO × XZ = XY2 ----------------- (i)

In ∆YOZ and ∆XYZ, we have,

∠Z = ∠Z → common

∠YOZ = ∠XYZ → each equal to 90°

Therefore, ∆ YOZ ~ ∆ XYZ → by AA-similarity

⇒ OZ/YZ = YZ/XZ

⇒ OZ × XZ = YZ2 ----------------- (ii)

From (i) and (ii) we get,

XO × XZ + OZ × XZ = (XY2 + YZ2)

⇒ (XO + OZ) × XZ = (XY2 + YZ2)

⇒ XZ × XZ = (XY2 + YZ2)

⇒ XZ 2 = (XY2 + YZ2)

Answered by Anonymous
0

Step-by-step explanation:

Pythagoras' theorem :- --------

→ In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

Step-by-step explanation:

It's prove :-

➡ Given :-

→ A △ABC in which ∠ABC = 90° .

➡To prove :-

→ AC² = AB² + BC² .

➡ Construction :-

→ Draw BD ⊥ AC .

➡ Proof :-

In △ADB and △ABC , we have

∠A = ∠A ( common ) .

∠ADB = ∠ABC [ each equal to 90° ] .

∴ △ADB ∼ △ABC [ By AA-similarity ] .

⇒ AD/AB = AB/AC .

⇒ AB² = AD × AC ............(1) .

In △BDC and △ABC , we have

∠C = ∠C ( common ) .

∠BDC = ∠ABC [ each equal to 90° ] .

∴ △BDC ∼ △ABC [ By AA-similarity ] .

⇒ DC/BC = BC/AC .

⇒ BC² = DC × AC. ............(2) .

Add in equation (1) and (2) , we get

⇒ AB² + BC² = AD × AC + DC × AC .

⇒ AB² + BC² = AC( AD + DC ) .

⇒ AB² + BC² = AC × AC .

 \huge \green{ \boxed{ \sf \therefore AC^2 = AB^2 + BC^2 }}

Hence, it is proved.

Similar questions