Math, asked by vandanasingh99192662, 10 months ago

prove root 2 is irrational

Answers

Answered by Anonymous
20

REQUIRED SOLUTION

To Prove :- Prove root 2 is irrational

Proof :-

Let √2 be a rational number 

Therefore, √2= p/q  [ p and q are in their least terms i.e., HCF of (p,q)=1 and q ≠ 0

On squaring both sides, we get 

                   p²= 2q²                                                                                    ...(1)

Clearly, 2 is a factor of 2q²

⇒ 2 is a factor of p²                                                                    [since, 2q²=p²]

⇒ 2 is a factor of p

 Let p =2 m for all m ( where  m is a positive integer)

Squaring both sides, we get 

            p²= 4 m²                                                                                          ...(2)

From (1) and (2), we get 

           2q² = 4m²      ⇒      q²= 2m²

Clearly, 2 is a factor of 2m²

  • ⇒       2 is a factor of q²                                                      [since, q² = 2m²]
  • ⇒       2 is a factor of q 

Thus, we see that both p and q have common factor 2 which is a contradiction that H.C.F. of (p,q)= 1

  •      Therefore, Our Assumption is wrong!

Hence √2 is not a rational number i.e., irrational number.

Thank You

\boxed{\bold{\orange{ Follow \: Civil Being\: and\: his\: Following }}}\\

<body bgcolor=cream><font color=red><marquee>Hᴏᴘᴇ ɪᴛ ᴡɪʟʟ ʜᴇʟᴘ ʏᴏᴜ ... Tʜᴀɴᴋɪɴɢ Yᴏᴜ Rᴇɢᴀʀᴅs :) cเѵเℓɓεเɳɠ ɦεɾε → Exᴘʟᴏʀᴇ Mʏ Pʀᴏғɪʟᴇ ^-^/

Answered by surendrasahoo
6

Hey your answer.

Hope it helps..

#thank you#

Attachments:
Similar questions