Math, asked by hussainfarha061, 1 month ago

prove

sec^4 A- cot^4 A= 1 + 2tan^2A​

Answers

Answered by anindyaadhikari13
18

\texttt{\textsf{\large{\underline{Correct Question}:}}}

  • Prove that – sec⁴(x) - tan⁴(x) = 1 + 2 tan²(x).

\texttt{\textsf{\large{\underline{Proof}:}}}

To prove this equality, we have to prove that LHS = RHS.

Taking LHS, we get:

 \sf =  {sec}^{4}(x)- {tan}^{4}(x)

By using identity a² - b² = (a + b) ⋅ (a - b), we get:

 \sf = ( {sec}^{2}x- {tan}^{2}x)( {sec}^{2}x + {tan}^{2}x)

As we know that:

 \sf \implies{sec}^{2}x- {tan}^{2}x = 1

We get:

 \sf = {sec}^{2}x + {tan}^{2}x

Also:

 \sf \implies{sec}^{2}x- {tan}^{2}x = 1

 \sf \implies{sec}^{2}x = 1 + {tan}^{2}x

Substituting the value in the expression, we get:

 \sf = (1 +  {tan}^{2}x)+ {tan}^{2}x

 \sf = 1 +2 \: {tan}^{2}x

We observe that LHS = RHS.

Hence Proved..!!

\texttt{\textsf{\large{\underline{Learn More}:}}}

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.
Similar questions