Math, asked by Stella2108, 4 days ago

prove (sec A + tan A)(1-sin A) =cos A​

Answers

Answered by sugantipandit601
1

Prove that (sec A + tan A)(1 – sin A) = cos A. (a + b)(a – b)= a2 – b2, So, (1 + sin A)(1 – sin A) = 1 – sin2A. Hence, the value of (sec A + tan A) (1 – sin A) is equal to cos A.

Answered by Sauron
13

Step-by-step explanation:

LHS = (secA + tanA)(1 – sinA)

RHS = cosA

Solving LHS,

\rm{\longrightarrow} \:  (secA + tanA)(1 - sinA)

\rm{\longrightarrow} \:  \bigg( \dfrac{1}{cosA} +  \dfrac{sinA}{cosA}\bigg)(1 - sinA)

\rm{\longrightarrow} \:  \bigg( \dfrac{1 + sinA}{cosA}\bigg)(1 - sinA)

\rm{\longrightarrow} \:  \dfrac{1 + sinA -  {sinA}^{2} -sinA  }{cosA}

\rm{\longrightarrow} \:  \dfrac{1 -  {sinA}^{2}  }{cosA}

Using the trignometric identity,

sinA² + cosA² = 1

\rm{\longrightarrow} \:  \dfrac{{cosA}^{2}}{cosA}

\rm{\longrightarrow} \:  cosA

LHS = cosA

RHS = cosA

LHS = RHS

Hence proved.

Similar questions