Math, asked by jakajvsvsgssh, 11 months ago

Prove:: sin 80° cos 20° - cos 80° sin 20° =√3/2​

Answers

Answered by advsanjaychandak
38

Answer:

Given;

 \sin(80)  \cos(20)  -  \cos(80)  \sin(20)

we know that,

 \sin(a - b) =  \sin(a)   \cos(b)  -  \cos(a) sin(b)

 \sin(80 - 20)  = sin80 \: cos20 - cos80 \: sin20

According to the question,

sin(80 - 20) =  \frac{ \sqrt{3} }{2}

sin60 =  \frac{ \sqrt{3} }{2}

Hence proved...

Thanks

#kanika...

Answered by Anonymous
13

Using the formula

sin(a  -  b) =  \sin(a)  \cos(b)  -  \cos(a)  \sin(b)

So,

 \sin(80)  \cos(20)  -  \cos(80)  \sin(20)   \\  =  >  \sin(80 - 20)  \\  =  >  \sin(60)  \\  =  >   \frac{ \sqrt{3} }{2}  = rhs \:

Hence proved.

Similar questions