Prove : Sin (A-B)/Cos (A-B) = Cot A + Cot B/1+
Cot A Cot B
Answers
Answered by
2
Answer:
RHS:
cotA = sinA/cosB
cotB = sinB/cosB
==> (sinA/cosA + sinB/cosB) / (1 + sinA/cosB*sinB/cosB)
= sinAcosB + sinBcosA / cosAcosB + sinAsinB
we know that
sin(A-B) = sinAcosB - cosAsinB
cos(A-B) = cosAcosB + sinAsinB
= sin(A+B) / cos(A-B)
Hence Proved
Similar questions