prove Sin A + Cos A equal to root 2 cos 45 degree minus A
Answers
Step-by-step explanation:
To prove ----->
SinA + CosA = √2 Cos ( 45° - A )
Proof -------> We know that ,
1) Sin45° = 1 / √2
2) Cos45° = 1 / √2
3) Cos ( A - B ) = CosA CosB - SinA SinB
Now returning to original problem,
LHS = SinA + CosA
Dividing and multiplying by √2 we get,
=> √ 2 ( 1/√2 SinA + 1 / √2 CosA )
Applying Sin45° = Cos45° = 1/√2 , we get,
=> √2 ( Sin45° SinA + Cos45° CosA )
=> √2 ( CosA Cos45° + SinA Sin45° )
Applying above identity , we get ,
=> √2 Cos ( 45° - A ) = RHS
Additional information----->
1) Cos ( A + B ) = CosA CosB - SinA SinB
2) Sin ( A + B ) = SinA CosB + CosA SinB
3) Sin ( A - B ) = SinA CosB - CosA SinB
4) tan( A + B ) = ( tanA + tanB ) / ( 1 - tanA tanB )
5) tan( A - B ) = ( tanA - tanB ) / ( 1 + tanA tanB )