Math, asked by XxLeLxX, 19 days ago

prove:-

sin theta/cot theta + cosec theta = 2 + sin theta/cot theta - cosec theta

pls solve this.​

Answers

Answered by 111KING111
1

Answer:

I think it help you dear .

Attachments:
Answered by MysticSohamS
1

Answer:

your proof is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove :  \\  \frac{sin \: x}{cot \: x + cosec \: x}  = 2 +  \frac{sin \: x}{cot \: x - cosec \: x}  \\  \\  \frac{sin \: x}{cot \: x + cosec \: x}  -  \frac{sin \: x}{cot \: x - cosec \: x}  = 2 \\  \\ LHS =  \frac{sin \: x}{cot \: x + cosec \: x}  -  \frac{sin \: x}{cot \: x - cosec \: x}  \\  \\  =  \frac{sin \: x(cot \: x - cosec \: x)  - sin \: x(cot \: x + cosec \: x)}{(cot \: x + cosec \: x)(cot \: x - cosec \: x)}  \\  \\  =  \frac{sin \: x.cot \: x - sin \: x.cosec \: x - sin \: x.cot \: x - sin \: x.cosec \: x}{cot {}^{2} \: x - cosec {}^{2}   \: x}  \\  \\  =  \frac{ - 2.sin \: x.cosec \: x}{ - 1}  \\  \\  =  \frac{ - 2(1)}{  -  1}  \\  \\  = 2 \\  \\  = RHS \\  \\ thus \: proved

Similar questions