Math, asked by SaiSruthiD, 1 year ago

prove sinA+ cos A/ sinA-cosA+ sinA-cosA/sinA+cosA=2/sin^2A-cos^2A

Answers

Answered by MaheswariS
11

Answer:

\bf\frac{sin\;A+cos\;A}{sin\;A-cos\;A}+\frac{sin\;A-cos\;A}{sin\;A+cos\;A}=\frac{2}{sin^2A-cos^2A}

Step-by-step explanation:

Given:

\frac{sin\;A+cos\;A}{sin\;A-cos\;A}+\frac{sin\;A-cos\;A}{sin\;A+cos\;A}

=\frac{(sin\;A+cos\;A)^2+(sin\;A-cos\;A)^2}{(sin\;A-cos\;A)(sin\;A+cos\;A)}

Using the following algebraic identities

\implies\boxed{\begin{minipage}{5cm}$\bf(a+b)^2=a^2+b^2+2ab\\\\(a-b)^2=a^2+b^2-2ab\\\\(a-b)(a+b)=a^2-b^2$\end{minipage}}

we get

=\frac{sin^2A+cos^2A+2\,sin\,A\,cos\,A+sin^2A+cos^2A-2\,sin\,A\,cos\,A}{sin^2A-cos^2A}

Using \boxed{\bf\,sin^2\theta+cos^2\theta=1}

=\frac{1+2\,sin\,A\,cos\,A+1-2\,sin\,A\,cos\,A}{sin^2A-cos^2A}

=\frac{2}{sin^2A-cos^2A}

\implies\boxed{\bf\frac{sin\;A+cos\;A}{sin\;A-cos\;A}+\frac{sin\;A-cos\;A}{sin\;A+cos\;A}=\frac{2}{sin^2A-cos^2A}}

Find more:

Prove that: Sin^3A+cos^3A= (sinA+cosA)(1-sinAcosA)

https://brainly.in/question/5667216

Answered by rsvarier13
11

Answer:

Do see the image for the correct answer

Hope it helps!!!!!!!!!!!!!!!!!!!

Attachments:
Similar questions