Math, asked by luthradev18, 6 months ago

prove:tan^2 + cot^2 + 2 = sec^2 . cosec^2

Answers

Answered by PharohX
1

Step-by-step explanation:

LHS..

tan {}^{2} x + cot {}^{2} x + 2 \\  \\  =  \frac{ \sin {}^{2} (x) }{ \cos{}^{2}( x) }  +  \frac{ \cos {}^{2} (x) }{ \sin {}^{2} (x) }  + 2 \\  \\  =  \frac{ \sin {}^{4} (x)  +  \cos {}^{4} (x)  + 2 \sin {}^{2} (x) \cos {}^{2} (x)  }{ \cos {}^{2} (x)  \sin {}^{2} (x) }  \\  \\  =  \frac{( \sin {}^{2} (x) +  \cos {}^{2} (x) ){}^{2}   }{{ \cos {}^{2} (x)  \sin {}^{2} (x) } }  \\  \\   = \frac{1 {}^{2} }{{ \cos {}^{2} (x)  \sin {}^{2} (x) } }  \\  \\  =  \sec {}^{2} (x)  \cosec {}^{2} (x)

Similar questions