prove.. tan^2A/tanA-1+cotA/1-tanA=1+secAcosecA
Answers
Step-by-step explanation:
Solution :-
On taking LHS :
[Tan² A / (Tan A -1)] + [ Cot A / (1-Tan A]
=>[Tan² A /(Tan A -1)] + [ Cot A / {-(Tan A-1)}]
=> [Tan² A / (Tan A -1)] - [ Cot A / (Tan A-1)]
=> (Tan² A - Cot A )/(Tan A - 1)
=> [Tan² A - (1/Tan A )] / (Tan A - 1)
Since Cot A = 1/Tan A
=>[ (Tan³ A-1)/Tan A ]/(Tan A -1)
=> (Tan³ A -1)/[Tan A (Tan A-1)]
=> (Tan³ A -1³)/[Tan A (Tan A-1)]
=> [TanA-1)(Tan²A+(Tan A)(1)+1²)]/
[Tan A(Tan A-1)]
Since a³-b³ = (a-b)(a²+ab+b²)
=>[TanA-1)(Tan²A+TanA+1)]/[TanA(TanA-1)]
On cancelling Tan A -1
=> (Tan² A + Tan A +1)/ Tan A
=>(Tan²A/Tan A )+(Tan A/Tan A ) +(1/Tan A)
=> Tan A + 1 + Cot A
=> (Sin A / Cos A ) + 1 + (Cos A / Sin A )
Since , Tan A = Sin A / Cos A
Cot A = Cos A / Sin A
=>(Sin²A+SinACosA+Cos²A)/(SinACosA )
=> (1+Sin A Cos A )/(Sin A Cos A )
Since Sin² A + Cos² A = 1
=>(1/SinACosA )+(SinACosA/SinACosA )
=> (1/Sin A Cos A )+1
=> (1/Sin A ) (1/Cos A ) +1
We know that
1/Sin A = Cosec A
1/Cos A = Sec A
=> Cosec A Sec A +1
=> 1+ Cosec A Sec A
=> 1+ Sec A Cosec A
=> RHS
=> LHS = RHS
Hence, Proved.
Used formulae:-
→ a³-b³ = (a-b)(a²+ab+b²)
→ Tan A = Sin A / Cos A
→ Cot A = Cos A / Sin A
→ Sin² A + Cos² A = 1
→ 1/Sin A = Cosec A
→ 1/Cos A = Sec A
→ a×b = b×a