Math, asked by mayank137035, 1 year ago

prove - tan(π/4 +A ) = 1 + sin 2A/cos 2A

Answers

Answered by BEJOICE
7

 \tan( \frac{\pi}{4}  +  \alpha )  =  \frac{ \tan( \frac{\pi}{4} ) +  \tan( \alpha )  }{1 -  \tan( \frac{\pi}{4} )   \tan( \alpha ) }  \\  =  \frac{1 +  \tan( \alpha ) }{1 -  \tan( \alpha ) }  =  \frac{1 +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }{1 -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }  \\  =  \frac{ \cos( \alpha ) +  \sin( \alpha )  }{ \cos( \alpha )  -  \sin( \alpha ) }  \\  =  \frac{ { (\cos( \alpha ) +  \sin( \alpha ))}^{2} }{( \cos( \alpha )  -   \sin( \alpha )( \cos( \alpha ) +  \sin( \alpha ))}  \\  =  \frac{{ \cos}^{2}  \alpha  +  { \sin}^{2}  \alpha  + 2 \cos( \alpha )  \sin( \alpha ) }{{ \cos}^{2}  \alpha   -   { \sin}^{2}  \alpha}  \\  =  \frac{1 + 2 \cos( \alpha )  \sin( \alpha ) }{{ \cos}^{2}  \alpha   -   { \sin}^{2}  \alpha} \\  =  \frac{1 +  \sin(2 \alpha ) }{ \cos(2 \alpha ) }
Similar questions