prove tan 75 +cot 75=4
Answers
Answered by
16
Answer:
Step-by-step explanation:
tan75°=tan(30°+45°)
=(tan30°+tan45°)/(1-tan30°tan45°)
={(1/√3)+1}/{1-(1/√3)(1)}
=(√3+1)/(√3-1)
So,cot75°=1/tan75°
=(√3-1)/(√3+1)
Then,tan75°+cot75°={(√3+1)2+(√3-1)2}/{(√3)2-(1)2}
=4
Answered by
0
The value of tan 75 and cot 75 is 4.
Given:
tan 75 + cot 75
To Find:
Value of tan 75+ cot 75
Solution:
tan 75= 2+√3
cot 75 = 2-√3
tan 75+cot 75 = 2+√3+2-√3
tan 75+ cot 75 = 4.
Hence, the value of tan 75+ cot 75 is 4.
To learn more about trigonometry visit: https://brainly.in/question/11371684
#SPJ3
Similar questions