prove: tan inverse [ cos x / (1sin x)] = pie /4 - (x/2)
Answers
Answered by
4
☆☞ Here is ur answer ☜☆
✔✔ = cos2(x/2) - sin2 (x/2) / sin2(x/2)+cos2(x/2)+2 sin(x/2) cos(x/2)
✔✔ = [cos(x/2) - sin(x/2)] [cos(x/2) + sin(x/2)] / [sin(x/2)+cos(x/2)]2
✔✔ = [cos(x/2) - sin(x/2)] / [cos(x/2) + sin (x/2)]
✔✔ = 1 - tan(x/2) / 1+tan(x/2)
✔✔ = tan (pi/4 - x/2)
✔✔ =tan-1[tan(pi/4 - x/2)]
✔✔ = pi/4 - x/2
HOPE IT HELPS!
Answered by
3
hello!!!
☆☞ Here is ur answer ☜☆
» cos2(x/2) - sin2 (x/2) / sin2(x/2)+cos2(x/2)+2 sin(x/2) cos(x/2)
» [cos(x/2) - sin(x/2)] [cos(x/2) + sin(x/2)] / [sin(x/2)+cos(x/2)]2
» [cos(x/2) - sin(x/2)] / [cos(x/2) + sin (x/2)]
» 1 - tan(x/2) / 1+tan(x/2)
» tan (pi/4 - x/2)
» tan-1[tan(pi/4 - x/2)]
» pi/4 - x/2
Similar questions