Prove :
(tan θ + sec θ - 1)/(tan θ - sec θ + 1) = (1 + sin θ)/cos θ
Answers
Answered by
6
Solution :
Let A = (tan θ + sec θ - 1)/(tan θ - sec θ + 1) and
B = (1 + sin θ)/cos θ.
A = (tan θ + sec θ - 1)/(tan θ - sec θ + 1)
A = [(tan θ + sec θ) - (sec2θ - tan2θ)]/(tan θ - sec θ + 1)
A = {(tan θ + sec θ) (1 - sec θ + tan θ)}/(tan θ - sec θ + 1)
A = {(tan θ + sec θ) (tan θ - sec θ + 1)}/(tan θ - sec θ + 1)
A = tan θ + sec θ
A = (sin θ/cos θ) + (1/cos θ)
A = (sin θ + 1)/cos θ
A = (1 + sin θ)/cos θ
A = B, (Proved)
Similar questions