Math, asked by vidhippatel05, 18 days ago

prove : tan theta+ 2 tan 2 theta+4tan 4 theta + 8 cot 8 thetha = cot thetha​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider,

 \rm :\longmapsto\:\sf \: tan\theta  + 2tan2\theta  + 4tan4\theta  + 8cot8\theta

We know,

\boxed{ \tt{ \: tan2x =  \frac{2tanx}{1 -  {tan}^{2} x}}}

So,

\boxed{ \tt{ \: cot2x =  \frac{1 -  {tan}^{2} x}{2tanx} \:  \: }}

So, using this, we get

\sf \:=tan\theta  + 2tan2\theta  + 4tan4\theta  + 8 \times \bigg[\dfrac{1 -  {tan}^{2} 4\theta }{2tan4\theta } \bigg]

\sf \:=tan\theta  + 2tan2\theta  + 4tan4\theta  + 4\times \bigg[\dfrac{1 -  {tan}^{2} 4\theta }{tan4\theta } \bigg]

\sf \:=tan\theta  + 2tan2\theta  + 4tan4\theta  +  \bigg[\dfrac{4 -  4{tan}^{2} 4\theta }{tan4\theta } \bigg]

\sf \:=tan\theta  + 2tan2\theta  + 4tan4\theta  +  \dfrac{4 -  4{tan}^{2} 4\theta }{tan4\theta }

\sf \:=tan\theta  + 2tan2\theta  + \bigg[4tan4\theta  +  \dfrac{4 -  4{tan}^{2} 4\theta }{tan4\theta }\bigg]

\sf \:=tan\theta  + 2tan2\theta  + \bigg[\dfrac{4 {tan}^{2}4\theta  + 4 -  4{tan}^{2} 4\theta }{tan4\theta }\bigg]

\sf \:=tan\theta  + 2tan2\theta  + \bigg[\dfrac{4}{tan4\theta }\bigg]

\sf \:=tan\theta  + 2tan2\theta  + \bigg[\dfrac{4(1 -  {tan}^{2} 2\theta )}{2tan2\theta }\bigg]

\sf \:=tan\theta  + 2tan2\theta  + \bigg[\dfrac{2(1 -  {tan}^{2} 2\theta )}{tan2\theta }\bigg]

\sf \:=tan\theta  + 2tan2\theta  + \bigg[\dfrac{2 -  2{tan}^{2} 2\theta}{tan2\theta }\bigg]

\sf \:=tan\theta  + \bigg[2tan2\theta  + \dfrac{2 -  2{tan}^{2} 2\theta}{tan2\theta }\bigg]

\sf \:=tan\theta  + \bigg[\dfrac{ {2tan}^{2}2\theta  +  2 -  2{tan}^{2} 2\theta}{tan2\theta }\bigg]

\sf \:=tan\theta  + \bigg[\dfrac{ 2}{tan2\theta }\bigg]

\sf \:=tan\theta  + \bigg[\dfrac{ 2(1 -  {tan}^{2} \theta )}{2tan\theta }\bigg]

\sf \:=tan\theta  + \bigg[\dfrac{ (1 -  {tan}^{2} \theta )}{tan\theta }\bigg]

\sf \:=tan\theta  + \dfrac{ (1 -  {tan}^{2} \theta )}{tan\theta }

\sf \:=\dfrac{  {tan}^{2}\theta  +  1 -  {tan}^{2} \theta }{tan\theta }

\sf \:=\dfrac{1}{tan\theta }

\sf \:= \: cot\theta

Hence,

 \:  \: \boxed{ \tt{ \: \sf \: tan\theta  + 2tan2\theta  + 4tan4\theta  + 8cot8\theta  = cot\theta}}

Proved

Additional Information :-

\boxed{ \tt{ \: sin2x = 2sinxcosx =  \frac{2tanx}{1 +  {tan}^{2}x } \:  \: }}

\boxed{ \tt{ \: cos2x =  {cos}^{2}x -  {sin}^{2}x \:  \: }}

\boxed{ \tt{ \: cos2x =  1 -  {2sin}^{2}x \:  \: }}

\boxed{ \tt{ \: cos2x =  {2cos}^{2}x  - 1\:  \: }}

\boxed{ \tt{ \: cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x} \:  \: }}

\boxed{ \tt{ \: tan2x =  \frac{2tanx}{1  -   {tan}^{2} x} \:  \: }}

\boxed{ \tt{ \: sin3x = 3sinx -  {4sin}^{3}x \:  \: }}

\boxed{ \tt{ \: cos3x =  {4cos}^{3}x - 3cosx \:  \: }}

Similar questions