Math, asked by pranavkumbhar2020, 18 days ago

solve: (x^2d^2+xd-1)y=x^3/1+x^2​

Answers

Answered by mohdayaan88855
0

Answer:

jtnfowpqidr iscrurğýţ

Answered by brokendreams
0

The solution to the given differential equation is y = C_1 x + \dfrac{C_2}{x} + \Big( \dfrac{x^{2} -1}{4x} \Big) log(x^{2} + 1) + \Big( \dfrac{x^{2} + 1}{4x} \Big)

Step-by-step explanation:

Given: The differential equation (x^2D^2+xD-1)y=\frac{x^3}{1+x^2}

To Find: The solution to the given differential equation

Solution:

  • Finding the solution of the given differential equation

The given differential equation can be solved by using the method of variation of parameters.

For the given differential equation, let x = e^z such that we have x \frac{dy}{dx} = Dy and x^{2}  \frac{d^{2} y}{dx^{2} } = D(D-1)y where D = \frac{d}{dz}

Therefore, the differential equation becomes,

\Rightarrow (D^{2} - 1)y = \dfrac{e^{3z}}{1+e^{2z}}

The complementary function ( y_{_{CF}} = C_1 y_1 + C_2 y_2 ) is given by,

\Rightarrow m^2 - 1 = 0 \Rightarrow m = \pm 1

\Rightarrow y_{_{CF}} = C_1 e^z + C_2 e^{-z}

The particular integral is given as y_{_{PI}} = u y_1 + v y_2 where y_1 \ \text{and } y_2 can be found from the above expression, i.e. y_1 = e^z and y_2 = e^{-z}; u \text{ and } v can be determined by the below formulas.

u = - \int \dfrac{y_2 f(z)}{y_1 y'_2 - y'_1 y_2} dz \text{ and } v = \int \dfrac{y_1 f(z)}{y_1 y'_2 - y'_1 y_2} dz

Therefore, we have,

\Rightarrow u = - \int \dfrac{(e^{-z}) \Big( \dfrac{e^{3z}}{1+e^{2z}} \Big)}{(e^{z}) (-e^{-z}) - (e^{z}) (e^{-z})} dz

\Rightarrow u = - \int \dfrac{e^{2z}}{( {1+e^{2z}}) (-2)} dz

To solve the above integral, let t = 1 + e^{2z} \text{ such that } \Rightarrow dt = 2 e^{2z} dz, therefore,

\Rightarrow u = \dfrac{1}{4} \int \dfrac{1}{t} dt = \dfrac{1}{4} log (t)

\Rightarrow u = \dfrac{1}{4} log(1 + e^{2z})

Similarly, v = \dfrac{1}{4} [ (1 + e^{2z}) - log (1 + e^{2z})]

Therefore, the particular integral is y_{_{PI}} = u y_1 + v y_2 =  \dfrac{e^{z}}{4} [ log (1 + e^{2z})] + \dfrac{e^{-z}}{4} [ (1 + e^{2z}) - log (1 + e^{2z})]

The complete solution of the differential equation is y = y_{_{CF}} + y_{_{PI}}

\Rightarrow y = C_1 e^{z} + {C_2 e^{-z}} + \Big( \dfrac{e^{2z} -1}{4e^{z}} \Big) log(e^{2z} + 1) + \Big( \dfrac{e^{2z} + 1}{4e^{z}} \Big)

Now, putting e^{z} = x in the above expression, we get

\Rightarrow y = C_1 x + \dfrac{C_2}{x} + \Big( \dfrac{x^{2} -1}{4x} \Big) log(x^{2} + 1) + \Big( \dfrac{x^{2} + 1}{4x} \Big)

Hence, the solution to the given differential equation is y = C_1 x + \dfrac{C_2}{x} + \Big( \dfrac{x^{2} -1}{4x} \Big) log(x^{2} + 1) + \Big( \dfrac{x^{2} + 1}{4x} \Big)

Similar questions