Math, asked by A4bhangjyirist4ylish, 1 year ago

Prove tanA+tan(90-A)=secA*sec(90-A)

Answers

Answered by ARoy
54
tanA+tan(90°-A)
=tanA+cotA [∵, tan(90°-A)=cotA]
=tanA+1/tanA
=(tan²A+1)/tanA
=sec²A/tanA [∵, sec²A-tan²A=1]
=(1/cos²A)/(sinA/cosA)
=1/cos²A×cosA/sinA
=1/(cosAsinA)
=(1/cosA)(1/sinA)
=secAcosecA
=secAsec(90°-A) [∵, sec(90°-A)=cosecA] (Proved)
Answered by wifilethbridge
6

Answer:

To Prove : tanA+tan(90-A)=secA \times sec(90-A)

Solution :

tanA+tan(90-A)

Identity : Tan(90-\theta )= Cot \theta

tanA+cot A

Identity : Cot \theta = \frac{1}{Tan \theta}

tanA+\frac{1}{tanA}

\frac{(tan^2A+1)}{tanA}

Identity : Sec^2 \theta - Tan^2\theta = 1

\frac{sec^2A}{tanA }

Identity : sec\theta = \frac{1}{cos \theta}, \frac{sin \theta }{cos \theta}=tan \theta

\frac{\frac{1}{cos^2A}}{\frac{Sin A}{Cos A}}

\frac{1}{(cosAsinA)}

\frac{1}{cos A}=sec A , \frac{1}{sinA}=cosec A

secAcosecA

Using identity : sec(90^{\circ}-A)=cosecA

secA \times sec(90-A)

So, tanA+tan(90-A)=secA \times sec(90-A)

Hence proved

Similar questions