Prove tanA+tan(90-A)=secA*sec(90-A)
Answers
Answered by
54
tanA+tan(90°-A)
=tanA+cotA [∵, tan(90°-A)=cotA]
=tanA+1/tanA
=(tan²A+1)/tanA
=sec²A/tanA [∵, sec²A-tan²A=1]
=(1/cos²A)/(sinA/cosA)
=1/cos²A×cosA/sinA
=1/(cosAsinA)
=(1/cosA)(1/sinA)
=secAcosecA
=secAsec(90°-A) [∵, sec(90°-A)=cosecA] (Proved)
=tanA+cotA [∵, tan(90°-A)=cotA]
=tanA+1/tanA
=(tan²A+1)/tanA
=sec²A/tanA [∵, sec²A-tan²A=1]
=(1/cos²A)/(sinA/cosA)
=1/cos²A×cosA/sinA
=1/(cosAsinA)
=(1/cosA)(1/sinA)
=secAcosecA
=secAsec(90°-A) [∵, sec(90°-A)=cosecA] (Proved)
Answered by
6
Answer:
To Prove :
Solution :
Identity :
Identity :
Identity :
Identity :
Using identity :
So,
Hence proved
Similar questions