Prove tanA.tan2A.tan4A= tan3A
Answers
Answered by
2
Solution:
we may write tan2A as tan(3A-A)
we know that
tan(A-B) = tanA - tanB/1+tanA Χ tanbB
Here A =2A & B =A
Therefore
tan2A = tan(3A-A) = tan3A-tanA/1+tan3AtanA
tan2A(1+tan3A Χ tan2A) = tan3A-tanA
or. tan2A + tan2A Χtan3A Χ tanA = tan3A -tanA
or, tan2A Χtan3A Χ tanA = tan3A -tanA-tan2A =tan 3A
hence proved
Answered by
2
Step-by-step explanation:
can be written as tan(3A-A) now we have tan(a-b)=tana-tanb/1+tanatanbhere a =2A & b=A tan2A=tan(3A-A)=tan3A-tanA/1+tan3AtanA tan2A(1+tan3Atan2A) = tan3A-tanA tan2A + tan2Atan3AtanA = tan3A -tanA or tan2Atan3AtanA = tan3A -tanA-tan2Ahence proved
Similar questions