Prove tanx=(1+siny)/cosy, if sin(x-y)=cosx
Answers
Answered by
8
Given
- sin(x - y) = cos(x)
To Prove :
Solution :
Taking the given condition :
sin (x - y) = cos(x)
Formula Used here :
- sin (A - B) = sinA.cosB - cosA.sinB
- tanA = sinA/cosA
Other Trigonometric Formulae
- sin(A + B) = sinAcosB + cosAsinB
- cos(A + B) = cosAcosB - sinAsiB
- cos(A - B) = cosAcosB + sinAsinB
- sinA = 1/cosecA
- cosA = 1/secA
- cotA = cosA/sinA
Answered by
10
______________________________
- tanx=(1+siny)/cosy, if sin(x-y)=cosx
______________________________
↪Sin x cos y - cos x sin y = cos x
↪sin x cos y /cos x - cos x sin y / cos x = cos x / cos x
↪tan x * cos y - sin y = 1
↪tan x * cos y = 1+sin y
↪tan x = 1 + sin y/cos y
Therefore, Proved.
______________________________
Similar questions
Math,
5 months ago
Math,
5 months ago
Hindi,
9 months ago
English,
9 months ago
World Languages,
1 year ago
Computer Science,
1 year ago