Math, asked by rohth1968, 9 months ago

Prove tanx=(1+siny)/cosy, if sin(x-y)=cosx

Answers

Answered by Anonymous
8

Given

  • sin(x - y) = cos(x)

To Prove :

  • \sf\tan x = \dfrac {1+\sin  y}{\cos y}

Solution :

Taking the given condition :

sin (x - y) = cos(x)

\implies\sf {\sin x \cos y - cos x \sin y = \cos x}\\\\ \sf {Dividing \: both \: \: side \: by \: \cos x }\\\\ \implies\sf {\dfrac {\sin x \cos y}{\cos x} - \dfrac {\cos x \sin y}{\cos x}= \dfrac {\cos x }{\cos x}}\\\\ \implies \sf {\tan x.\cos y - \sin y = 1 }\\\\ \implies \sf{\tan x.\cos y = 1 + \sin y}\\\\ \implies \sf{\tan x = \dfrac {1+\sin y}{\cos y}}

\bf {Hence \: \: Proved}

Formula Used here :

  • sin (A - B) = sinA.cosB - cosA.sinB
  • tanA = sinA/cosA

Other Trigonometric Formulae

  • sin(A + B) = sinAcosB + cosAsinB
  • cos(A + B) = cosAcosB - sinAsiB
  • cos(A - B) = cosAcosB + sinAsinB
  • sinA = 1/cosecA
  • cosA = 1/secA
  • cotA = cosA/sinA
Answered by Anonymous
10

______________________________

\huge\tt{TO~PROVE:}

  • tanx=(1+siny)/cosy, if sin(x-y)=cosx

______________________________

\huge\tt{PROVING:}

↪Sin x cos y - cos x sin y = cos x

↪sin x cos y /cos x - cos x sin y / cos x = cos x / cos x

↪tan x * cos y - sin y = 1

↪tan x * cos y = 1+sin y

tan x = 1 + sin y/cos y

Therefore, Proved.

______________________________

Similar questions