Math, asked by cuongwlf, 1 year ago

prove \int\limits { \frac{1}{\sqrt{a^{2}-x^{2}} \  }} \, dx =sin^{-1} \frac{x}{a}

Answers

Answered by Swarup1998
0

Solution:

Let, x = a sinθ so that

dx = a cosθ dθ

Now, \displaystyle \mathsf{\int \frac{dx}{\sqrt{a^{2}-x^{2}}}}

= \displaystyle \mathsf{\int \frac{a\:cos\theta\:d\theta}{\sqrt{a^{2}-a^{2}\:sin^{2}\theta}}}

= \displaystyle \mathsf{\int \frac{a\:cos\theta\:d\theta}{\sqrt{a^{2}\:(1-sin^{2}\theta)}}}

= \displaystyle \mathsf{\int \frac{a\:cos\theta\:d\theta}{a\:cos\theta}}

= \displaystyle \mathsf{\int d\theta}

= \displaystyle \mathsf{\theta+C}

where C is constant of integration

= \displaystyle \mathsf{sin^{-1}\frac{x}{a}+C}

which is the required integral.

Hence, proved.

Similar questions