Physics, asked by ayushkumarmohanty5, 2 months ago

Prove:-

( \secθ -  \tanθ)^{2}  =  \frac{1 -  \sinθ }{1 +  \sinθ }.

Answers

Answered by amritamohanty1472
20

Answer:

 \huge  \fbox \pink {QUESTION}

( \secθ - \tanθ)^{2} = \frac{1 - \sinθ }{1 + \sinθ }.

 \huge \fbox \pink {SOLUTION}

 \bf L.H.S - ( \secθ -  \tanθ)^{2}  \\ \bf  = ( \frac{1}{ \cosθ} -  \frac{ \sinθ }{ \cosθ})^{2}  \\  \bf =  \frac{(1 -  \sinθ)(1 -  \sinθ) }{(1 -  \sin ^{2}θ)  }  \\  \bf  = \frac{ (1 -  \sinθ)(1 -  \sinθ)}{(1 -  \sinθ)(1 +  \sinθ)}  \\  \bf =  \frac{1 -  \sinθ}{1 +  \sinθ}  = R.H.S

Hence Proved !!

Similar questions