prove thar( tan 60-tan 45)/(1+tan 60*tan45)
Answers
Answer:
I hope this will help you
Given,
( tan 60-tan 45)/(1+tan 60*tan45) is given.
To find,
We have to find the value of ( tan 60-tan 45)/(1+tan 60*tan45).
Solution,
The value of ( tan 60-tan 45)/(1+tan 60*tan45) is (2 - √3).
We can simply find the value of ( tan 60-tan 45)/(1+tan 60*tan45) by using the concepts of trigonometry.
As we know,
tan60° = √3, tan45° = 1
=( tan 60-tan 45)/(1+tan 60*tan45)
Using the values of tan60° and tan 45°, we get
= (√3-1)/ (1+√3 * 1)
= (√3-1) / (√3 + 1)
Since we noted that root is present in the denominator, so to remove root from the denominator, we will rationalize the denominator.
= √3 - 1 / √3 + 1 * √3-1/√3-1
Using (a-b)(a-b) = (a-b)² and (a+b)(a-b) = a²-b², we get
= (√3-1)² / (√3)² - (1)²
= (√3)² +(1)² - 2√3 /2
= 4 - 2√3/2
Taking 2 common, we get
= 2(2 - √3)/2
= (2 - √3)
Hence, the value of ( tan 60-tan 45)/(1+tan 60*tan45) is (2 - √3).