Math, asked by purnasingh6460, 1 year ago

prove that {1+1/tan2A} * {1+1/cot2A} = 1/(sin2A-sin4A)

Answers

Answered by GUYINSANE
14

left \: side =  (1 +  \frac{1}{ { \tan(a) }^{2} } )(1 +  \frac{1}{ { \cot(a) }^{2} } ) \\  = (1 +  { \cot(a) }^{2} )(1 +  { \tan(a) }^{2} )  \\  =   { \csc(a) }^{2}  \times   { \sec(a) }^{2}  \\ =   \frac{1}{ { \sin(a) }^{2} }  \times  \frac{1}{ { \cos(a) }^{2} }  \\  =  \frac{1}{ { \sin(a) }^{2}  { \cos(a) }^{2}  }  \\  =  \frac{1}{ { \sin(a) }^{2} (1 -  { \sin(a) }^{2}) }  \\   =  \frac{1}{ { \sin(a) }^{2} -  { \sin(a) }^{4}  }  \\  = right \: side \\ hence \: proved

Answered by pranitadhote1712
0

Answer:

Answers is given hope it will help you

Attachments:
Similar questions