Math, asked by amaansheikh7339, 8 months ago

Prove that 1/(2+√3)+1/(√5-√3)-1/(2-√5)=0(

Answers

Answered by pushpaain
1

Step-by-step explanation:

Given, 1/(2 + √3) + 2/(√5 - √3) + 1/(2 - √5)

After rationalizing each term, we get

= [{1*(2 - √3)}/{(2 + √3)*(2 - √3)}] + [{2*(√5 + √3)}/{(√5 - √3)*(√5 + √3)}] + [{1*(2 + √5)}/{(2 + √5)*(2 - √5)}]

 = (2 - √3)/(4 - 3) + {2*(√5 + √3)}/(5 - 3) + (2 + √5)/(4 - 5)

= (2 - √3) + {2*(√5 + √3)}/2 + (2 + √5)/(-1)

= (2 - √3) + (√5 + √3) - (2 + √5)

= 2 - √3 + √5 + √3 - 2 - √5

= 0

So, 1/(2 + √3) + 2/(√5 - √3) + 1/(2 - √5) = 0

Similar questions