Math, asked by sakshamdubey66, 10 months ago

prove that 1/2√3 + 2/√5√3 + 1/2-√5=0​

Attachments:

Answers

Answered by rdvraval19
8

Answer:

YOUR ANSWER IS ATTACHED IN PICTURE

Attachments:
Answered by BrainlyConqueror0901
13

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  = 0 \\  \\ \red{\underline \bold{To \: Prove:}} \\ \tt:  \implies  \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  = 0

• According to given question :

\tt \circ \:\:\frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  = 0\\  \\  \bold{Solving \: L.H.S} \\ \tt:  \implies  \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }   \\  \\ \tt:  \implies \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  +  \frac{2}{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}   }  +  \frac{1}{2 -  \sqrt{5} }  \times  \frac{2 +  \sqrt{5} }{2 +  \sqrt{5} }  \\  \\ \tt:  \implies  \frac{2 -  \sqrt{3} }{ {2}^{2} -  {( \sqrt{3} )}^{2}  }  +  \frac{ 2\sqrt{5} + 2 \sqrt{3}  }{ {( \sqrt{5}) }^{2}  -  { (\sqrt{3}) }^{2} }  +  \frac{2 +  \sqrt{5} }{ {2}^{2}  -   {( \sqrt{5}) }^{2} }  \\  \\ \tt:  \implies \frac{2 -  \sqrt{3} }{4 - 3}  +  \frac{2 \sqrt{5} +  2\sqrt{3}  }{5 - 3}  +  \frac{2 +  \sqrt{5} }{4 - 5}  \\  \\ \tt:  \implies 2 -  \sqrt{3}  +  \sqrt{5}  +  \sqrt{3}   - 2 -  \sqrt{5}  \\  \\  \green{\tt:  \implies 0} \\  \\ \green{\tt\:L.H.S=R.H.S}  \\\\\huge{\red  {\bold{Proved }}}

Similar questions