Math, asked by sumi60749, 3 months ago

prove that:1/2+√3 + 2/✓5-√3 + 1/2-√5 =0​

Answers

Answered by Anonymous
6

Step-by-step explanation:

To Prove-

( \frac{1}{2 +  \sqrt{3} } ) +  (\frac{2}{ \sqrt{5}  -  \sqrt{3} })  + ( \frac{1}{2 -  \sqrt{5} } ) = 0

Proof -

( \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} } ) + ( \frac{2}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} } ) + ( \frac{1}{2 -  \sqrt{5} }  \times  \frac{2 +  \sqrt{5} }{2 +  \sqrt{5} } ) = 0 \\  \\ ( \frac{2 -  \sqrt{3} }{(2 {)}^{2} - ( \sqrt{3}  {)}^{2}  } ) + ( \frac{2( \sqrt{5} +  \sqrt{3})  }{( \sqrt{5 } {)}^{2}  - ( \sqrt{3}  {)}^{2}  } ) + ( \frac{2 +  \sqrt{5} }{(2 {)}^{2}  - ( \sqrt{5}  {)}^{2} } ) = 0 \\  \\ ( \frac{2 -  \sqrt{3} }{4 - 3} ) +  (\frac{2( \sqrt{5} +  \sqrt{3} ) }{5 - 3} ) +(  \frac{2 +  \sqrt{5} }{4 - 5}  = 0 \\  \\ 2 -  \sqrt{3}  +  \sqrt{5}  +  \sqrt{3}  - 2 +  \sqrt{5}  = 0 \\  \\ 0 = 0

Hence proved.

Similar questions