Math, asked by shoibharish, 1 year ago

Prove that 1/3+√7 + 1/√7+√5 + 1/√5+√3 + 1/√3+1 = 1

Answers

Answered by DhruvNandu
8
1/(3+√7)+1/(√7+√5)+1/(√5+√3)+1/(√3+1)
=1/(3+√7)×(3-√7)/(3-√7)+1/(√7+√5)×(√7-√5)/(√7-√5)+1/(√5+√3)×(√5-√3)/(√5-√3)+1/(√3+1)× (√3-1)/(√3-1)
=(3-√7)/(3^2-√7^2)+(√7-√5)/(√7^2-√5^2)+(√5-√3)/(√5^2-√3^2)+(√3-1)/(√3^2-1^2)
=3-√7)/(9-7)+(√7-√5)/(7-5)+(√5-√3)/(5-3)+(√3-1)/(3-1)
=3-√7+√7-√5+√5-√3+√3-1/2
=3-1/2
=2/2
=1
therefore L.H.S=R.H S
Answered by OoINTROVERToO
1

 \bf \frac{1}{3 +  \sqrt{7} }  +  \frac{1}{ \sqrt{7} +  \sqrt{5}  }  +  \frac{1}{ \sqrt{5}  +  \sqrt{3} }  +  \frac{1}{ \sqrt{3}  + 1}  = 1 \\  \\ \tt \large \: RATIONALISING  \:  \: THE  \:  \: ABOVE \\  \\  \bf \frac{3 -  \sqrt{7} }{9 - 7 }  +  \frac{ \sqrt{7} -  \sqrt{5}  }{ 7 - 5  }  +  \frac{ \sqrt{5} -  \sqrt{3}  }{5 - 3 }  +  \frac{ \sqrt{3}  - 1}{ 3 -  1}  = 1 \\  \\ \bf \frac{3 -   \cancel{\sqrt{7}  +  \sqrt{7} -  \sqrt{5} +    \sqrt{5} -  \sqrt{3}  +   \sqrt{3}  }- 1}{ 2}  = 1 \\  \\ \huge  \bf  \fcolorbox{red}{grey}{1 = 1}

Similar questions