Math, asked by gharjai6170, 1 year ago

Prove that 1/3+root7 + 1/root7+ root5 + 1/root5+root3 + 1/root3 +1 =1

Answers

Answered by smithasijotsl
2

Answer:

Step-by-step explanation:

To prove

\frac{1}{3+\sqrt{7} } + \frac{1}{\sqrt{7}+\sqrt{5} } + \frac{1}{\sqrt{5}+\sqrt{3} } + \frac{1}{\sqrt{3}+1 } = 1

Solution:

\frac{1}{3+\sqrt{7} }

Rationalizing factor is 3-\sqrt{7}

\frac{1}{3+\sqrt{7} } = \frac{1}{3+\sqrt{7} } × \frac{3-\sqrt{7}}{3-\sqrt{7} }

= \frac{3-\sqrt{7}}{9-7 }

= \frac{3-\sqrt{7}}{2}

\frac{1}{3+\sqrt{7} } = \frac{3-\sqrt{7}}{2}

\frac{1}{\sqrt{7}+\sqrt{5} }

Rationalizing factor is \sqrt{7}-\sqrt{5}

\frac{1}{\sqrt{7}+\sqrt{5} } = \frac{1}{\sqrt{7}+\sqrt{5} }  ×\frac{\sqrt{7}- \sqrt{5}}{\sqrt{7}- \sqrt{5} }

= \frac{\sqrt{7}- \sqrt{5}}{2}

\frac{1}{\sqrt{7}+\sqrt{5} } = \frac{\sqrt{7}- \sqrt{5}}{2}

\frac{1}{\sqrt{5}+\sqrt{3} }

Rationalizing factor is \sqrt{5}-\sqrt{3}

\frac{1}{\sqrt{5}+\sqrt{3} }  = \frac{1}{\sqrt{5}+\sqrt{3} }   ×\frac{\sqrt{5}- \sqrt{3}}{\sqrt{5}- \sqrt{3} }

= \frac{\sqrt{5}- \sqrt{3}}{2}

\frac{1}{\sqrt{5}+\sqrt{3} } = \frac{\sqrt{5}- \sqrt{3}}{2}

\frac{1}{\sqrt{3}+1 }

Rationalizing factor is \sqrt{3}-1

\frac{1}{\sqrt{3}+1 }  =\frac{1}{\sqrt{3}+1 }   ×\frac{\sqrt{3}- 1}{\sqrt{3}- 1 }

= \frac{\sqrt{3}- 1}{2}

\frac{1}{\sqrt{3}+1 } = = \frac{\sqrt{3}- 1}{2}

Substituting the values of each term we get,

LHS = \frac{1}{3+\sqrt{7} } + \frac{1}{\sqrt{7}+\sqrt{5} } + \frac{1}{\sqrt{5}+\sqrt{3} } + \frac{1}{\sqrt{3}+1 }  =  \frac{3-\sqrt{7}}{2} +  \frac{\sqrt{7}- \sqrt{5}}{2} +  \frac{\sqrt{5}- \sqrt{3}}{2} + \frac{\sqrt{3}- 1}{2}

= \frac{3-\sqrt{7} +\sqrt{7} -\sqrt{5}+\sqrt{5}-\sqrt{3} +\sqrt{3} -1 }{2}

= \frac{3-1}{2}

= 1

=RHS

Hence proved

#SPJ2

Answered by ushmagaur
0

Answer:

\frac{1}{3+\sqrt{7} } +\frac{1}{\sqrt{7} +\sqrt{5} }+ \frac{1}{\sqrt{5} +\sqrt{3} }+\frac{1}{\sqrt{3} +1 }=1 is proved.

Step-by-step explanation:

Step 1 of 2

To prove:- \frac{1}{3+\sqrt{7} } +\frac{1}{\sqrt{7} +\sqrt{5} }+ \frac{1}{\sqrt{5} +\sqrt{3} }+\frac{1}{\sqrt{3} +1 }=1

Consider the left-hand side as follows:

\frac{1}{3+\sqrt{7} } +\frac{1}{\sqrt{7} +\sqrt{5} }+ \frac{1}{\sqrt{5} +\sqrt{3} }+\frac{1}{\sqrt{3} +1 } . . . . . (1)

Rationalize the term \frac{1}{3+\sqrt{7} } as follows:

\frac{1}{3+\sqrt{7} }\times\frac{3-\sqrt{7} }{3-\sqrt{7}}

\frac{3-\sqrt{7} }{(3+\sqrt{7} )(3-\sqrt{7} )}

\frac{3-\sqrt{7} }{3^2-(\sqrt{7})^2} (Using the identity, (a+b)(a-b)=a^2-b^2)

\frac{3-\sqrt{7} }{9-7}

\frac{3}{2}-\frac{\sqrt{7} }{2}

Similarly,

Rationalize the term \frac{1}{\sqrt{7} +\sqrt{5} } as follows:

\frac{1}{\sqrt{7}+\sqrt{5}  }\times\frac{\sqrt{7}-\sqrt{5}  }{\sqrt{7}-\sqrt{5} }

\frac{\sqrt{7}-\sqrt{5}  }{(\sqrt{7})^2-(\sqrt{5} )^2} (Using the identity, (a+b)(a-b)=a^2-b^2)

\frac{\sqrt{7}-\sqrt{5}  }{7-5}

\frac{\sqrt{7} }{2}-\frac{\sqrt{5} }{2}

Rationalize the term \frac{1}{\sqrt{5} +\sqrt{3} } as follows:

\frac{1}{\sqrt{5}+\sqrt{3}  }\times\frac{\sqrt{5}-\sqrt{3}  }{\sqrt{5}-\sqrt{3} }

\frac{\sqrt{5}-\sqrt{3}  }{(\sqrt{5})^2-(\sqrt{3} )^2} (Using the identity, (a+b)(a-b)=a^2-b^2)

\frac{\sqrt{5}-\sqrt{3}  }{5-3}

\frac{\sqrt{5} }{2}-\frac{\sqrt{3} }{2}

Rationalize the term \frac{1}{\sqrt{3}+1 } as follows:

\frac{1}{\sqrt{3} +1 }\times\frac{\sqrt{3} -1 }{\sqrt{3}-1 }

\frac{\sqrt{3}-1  }{((\sqrt{3} )^2-1^2} (Using the identity, (a+b)(a-b)=a^2-b^2)

\frac{\sqrt{3} -1 }{3-1}

\frac{\sqrt{3} }{2}-\frac{1}{2}

Step 2 of 2

Substitute all the rationalizing values in the equation (1) as follows:

\frac{3}{2}-\frac{\sqrt{7} }{2} +\frac{\sqrt{7} }{2}-\frac{\sqrt{5} }{2} +\frac{\sqrt{5} }{2}-\frac{\sqrt{3} }{2} +\frac{\sqrt{3} }{2}-\frac{1 }{2}

On simplifying, we get

\frac{3}{2}-\frac{1}{2}

\frac{2}{2}

⇒ 1

Thus, LHS = 1

Also, the RHS = 1

Therefore, LHS = RHS

Hence proved.

#SPJ2

Similar questions