Math, asked by mangalacharanmishra, 11 months ago

prove that 1 by cosec theta minus cot theta minus 1 by sin theta equals to 1 by sin theta minus 1 by cosec theta + cot theta​

Attachments:

Answers

Answered by kailashmeena123rm
3

Answer:

see attachment

Step-by-step explanation:

mark me as brainliest

Attachments:
Answered by Anonymous
60

✧ANSWER✧

\:\:\:\:

\bf\footnotesize\dfrac{1}{(cosፀ - cotፀ)}  \sf - \bf\footnotesize\dfrac{1}{(sinፀ)} \sf = \bf\footnotesize\dfrac{1}{(sinፀ)}  \sf - \bf\footnotesize\dfrac{1}{(cosecፀ + cotፀ)}

\:\:

\:\:\:\:\: \sf LHS \sf = \bf\small\dfrac{1}{(cosecፀ - cotፀ)} \sf = \bf\small\dfrac{1}{(sinፀ)}

\:\:

 \implies \bf\small\dfrac{1}{(cosecፀ - cotፀ)} \sf × \bf\small\dfrac{(cosecፀ + cotፀ)}{(cosecፀ + cotፀ)} \sf - \sf cosecፀ

\:\:

\:\:\:\: \implies \bf\dfrac{(cosecፀ + cotፀ)}{(cosec²ፀ + cot²ፀ)} \sf - \sf cosecፀ

\:\:

\:\:\:\: \implies \sf (cosecፀ + cotፀ)-cosecፀ

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \underline{\boxed{\sf{=\frak{\red{cotፀ}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\:\:

\:\: \sf RHS  \sf = \bf\dfrac{1}{(sinፀ)} \sf - \bf\dfrac{1}{(cosecፀ + cotፀ)}

\:\:

\:\:  \implies \sf cosecፀ \sf - \bf\dfrac{1}{(cosecፀ + cotፀ)}

\:\:

 \implies \sf cosecፀ \sf - \bf\dfrac{1}{(cosecፀ + cotፀ)} \sf × \bf\dfrac{(cosecፀ - cotፀ)}{(cosecፀ - cotፀ)}

\:\:

\:\:  \implies \sf cosecፀ \sf - \bf\dfrac{(cosecፀ - cotፀ)}{(cosec²ፀ - cot²ፀ)}

\:\:

\:\:  \implies \sf cosecፀ \sf - \sf (cosecፀ-cotፀ)

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{=\frak{\green{cotፀ}}}}}

[/tex][tex]\:\:

{\bold { \underline{\large{\therefore\:LHS \:=\: RHS}}}}

Similar questions