Math, asked by pankajbansal99188, 9 months ago

prove that (1-cos 2x+sin x)/(sin 2x +cos x)=tan x​

Answers

Answered by simran6991
3

Answer:

we know that

cos (2x) = cos^2(x) - sin^2(x)

= 2,cos^2 (x) -1 = 1- 2sin^2 (x)

and

sin(2x) = 2 sin(x) cos(x)

LHS =

left hand side

left \: hand \: side \:  =  \:  \frac{(1 -  \cos(2x)  +  \sin(x) )}{ \sin(2x) +  \cos(x)  }  \\  =  \frac{(1 - 1  +  \: 2 \ { \sin(x) }^{2}  +  \sin(x))  }{2 \sin(x)  \cos(x)  +  \cos(x) }  \\  =  \frac{ \sin(x) (2 \sin(x)  + 1)}{ \cos(x) (2 \sin(x) + 1) }  \\  =  \frac{ \sin(x) }{ \cos(x) }  =  \tan(x)  \\  = right \: hand \: side

Similar questions