prove that , 1+cos A - sin A /1- cosA-sinA=1- sin A /cos A
suyashsareen10:
can u send me a pic of this question
Answers
Answered by
4
sinA/1-cosA =1 +cosA/sinA
L.H.S= sinA/1-cosA
=sinA(1+cosA)/(1-cosA)(1+cosA)
=sinA(1+cosA)/1-cos^2(A)
=sinA(1+cosA)/sin^2(A)
=1 +cosA/sinA
=R.H.S
We have to prove:
sinA/(1 - cosA) = (1 + cosA)/sinA
To do this we multiply both sides of equation by (1 - cosA)*sinA, giving
[sinA/(1 - cosA)]*[(1 - cosA)*sinA] = [(1 + cosA)/sinA]*[(1 - cosA)*sinA]
Therefor:
sinA^2* = (1 + cosA)*(1 - cosA)
Therefore:
sinA^2* = 1 - cosA^2
Shifting the term cosA^2 from right hand side to left hand side in the above equation we get:
sinA^2* + cosA^2 = 1
We know above relationship to be true. Therefor the given equation is true.
L.H.S= sinA/1-cosA
=sinA(1+cosA)/(1-cosA)(1+cosA)
=sinA(1+cosA)/1-cos^2(A)
=sinA(1+cosA)/sin^2(A)
=1 +cosA/sinA
=R.H.S
We have to prove:
sinA/(1 - cosA) = (1 + cosA)/sinA
To do this we multiply both sides of equation by (1 - cosA)*sinA, giving
[sinA/(1 - cosA)]*[(1 - cosA)*sinA] = [(1 + cosA)/sinA]*[(1 - cosA)*sinA]
Therefor:
sinA^2* = (1 + cosA)*(1 - cosA)
Therefore:
sinA^2* = 1 - cosA^2
Shifting the term cosA^2 from right hand side to left hand side in the above equation we get:
sinA^2* + cosA^2 = 1
We know above relationship to be true. Therefor the given equation is true.
Answered by
0
Step-by-step explanation:
hope it works and follow me
Attachments:
Similar questions