Math, asked by justice5finallegacy, 9 months ago

Prove that:
(1 + cosθ + sinθ )/(1 + cosθ - sinθ ) = (1 + sinθ )/cosθ​

Answers

Answered by Anonymous
10

Answer:

{\bf{\green{(1 - cosθ + sinθ )/(-1 + cosθ + sinθ )}}}

{\bf{\red{= (1 + sinθ )/cosθ}}}

{\bf{\blue{LHS, }}}

{\bf{\pink{(1-cosθ+sinθ)/(-1+cosθ+sinθ)}}}

{\bf{\green{Divide by cosθ}}}

{\bf{\orange{(1-cosθ+sinθ)/cosθ/(1+cosθ-sinθ)/cosθ}}}

{\bf{\blue{(secθ-1+tanθ)/(-secθ+1+tanθ)}}}

{\bf{\red{(secθ+tanθ) - 1/(secθ-tanθ+1)}}}

{\bf{\green{</p><p>(secθ+tanθ)-(sec^2θ-tan^2θ)/(-secθ+tanθ+1)}}}

{\bf{\pink{(secθ+tanθ)-((secθ+tanθ)(secθ-tanθ))/(-secθ+tanθ+1)}}}

{\bf{\blue{(secθ+tanθ)(1-(secθ-tanθ)/(-secθ+tanθ+1)}}}

{\bf{\red{(secθ+tanθ)(1-secθ+tanθ)/(-secθ+tanθ+1)}}}

{\bf{\blue{(secθ+tanθ)(1-secθ+tanθ)/(1-secθ+tanθ)}}}

{\bf{\pink{(secθ+tanθ)}}}

{\bf{\green{(1/cosθ+sinθ/cosθ)}}}

{\bf{\orange{(1+sinθ)/cosθ RHS}}}

{\bf{\blue{HENCE PROVED... }}}

Answered by ItzAwesomeBeauty
21

Answer:

Answer:

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

\large\green{\mid{\fbox{\tt{Ꭲօ թɾօѵҽ}}\mid}}

\frac{sinθ}{1+cosθ}+\frac{1+cosθ}{sinθ}=2cosecθ

\large\red{\mid{\fbox{\tt{รοℓυƭเօɳ}}\mid}}

\large\pink{\mid{\fbox{\tt{ᏞᎻร}}\mid}}=

⟹\sf\bold{\blue{\frac{sinθ}{1+cosθ}+\frac{1+cosθ}{sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+(1+cosθ)²}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+1+cos²θ+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+cos²θ+1+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2(1+cosθ)}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2}{sinθ}}}

⟹\large\pink{\mid{\fbox{\tt{2.coseθ}}\mid}}

\large\pink{\mid{\fbox{\tt{ᏞᎻร=ƦᎻร}}\mid}}

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

_________________________________⠀⠀⠀⠀

⠀⠀⠀ \large\green{\mid{\fbox{\tt{❥ϐℓυєᴇყεร}}\mid}}

_________________________________⠀

Similar questions