prove that √1+cos theta/√1–cos theta = cot * theta /2
Answers
Answer:
Step-by-step explanation:
\begin{gathered}to \: prove \\ \\ \frac{ \sqrt{1 + \cos\alpha } }{ \sqrt{1 - \cos \alpha } } = cosec \alpha + \cot \alpha \\ \\ proof \\ \\ lhs \\ \\ = \frac{ \sqrt{1 + \cos \alpha } }{ \sqrt{1 - cos \alpha } } \\ \\ = \frac{ \sqrt{(1 + cos \alpha )(1 + cos \alpha )} }{ \sqrt{(1 - cos \alpha )(1 + cos \alpha )} } \\ \\ = \frac{ \sqrt{ {(1 + cos \alpha )}^{2} } }{ \sqrt{ {1}^{2} - {cos}^{2} \alpha } } \\ \\ = \frac{ \sqrt{( {1 + cos \alpha )}^{2} } }{ \sqrt{ {sin}^{2} \alpha } } \\ \\ = \frac{1 + cos \alpha }{ \sin\alpha } \\ \\ = \frac{1}{sin \alpha } + \frac{cos \alpha }{sin \alpha } \\ \\ = cosec \alpha + cot \alpha \\ \\ = rhs \\ \\ hence \: proved\end{gathered}
toprove
1−cosα
1+cosα
=cosecα+cotα
proof
lhs
=
1−cosα
1+cosα
=
(1−cosα)(1+cosα)
(1+cosα)(1+cosα)
=
1
2
−cos
2
α
(1+cosα)
2
=
sin
2
α
(1+cosα)
2
=
sinα
1+cosα
=
sinα
1
+
sinα
cosα
=cosecα+cotα
=rhs
henceproved
=================================
Have taken theta =α
FORMULAS USED:
1) (a+b)(a-b) =a²-b²
2)cos²A+sin²A=1
3)1/sinA=cosecA
4)cosA/sinA=cotA