Math, asked by sandrakunjumon324, 4 months ago

Prove that 1+cos2A/sin2A=cotA and deduce the value of cot15

Answers

Answered by BrainlyPopularman
22

TO PROVE :

 \\ \bf \implies\dfrac{1+ \cos(2A)}{ \sin(2A)}= \cot(A) \\

SOLUTION :

Let's take L.H.S. –

 \\ \bf \:  \:  =  \:  \: \dfrac{1+ \cos(2A)}{ \sin(2A)}\\

• We know that –

 \\ \bf  \longrightarrow\:\: \orange{\cos(2A)=  \:  \: 2 \cos ^{2} (A) - 1}\\

 \\ \bf  \longrightarrow\:\: \orange{\sin(2A)=  \:  \: 2\sin(A)\cos(A) }\\

• So that –

 \\ \bf \:  \:  =  \:  \: \dfrac{1+2 \cos ^{2} (A) - 1}{2\sin(A) \cos(A) }\\

 \\ \bf \:  \:  =  \:  \: \dfrac{2 \cos ^{2} (A)}{2\sin(A) \cos(A) }\\

 \\ \bf \:  \:  =  \:  \: \dfrac{\cos(A)}{\sin(A) }\\

 \\ \bf \:  \:  =  \:  \: \cot(A)\\

 \\ \bf \:  \:  =  \:  \:R.H.S. \\

 \\  \large {\green{\:  \:  \to\:  \:{ \boxed{ \underline{ \bf Hence \:  \: Proved}}} }}\\

\\\rule{200}{2}\\

• Now let's find the value of cot(15°)

 \\\bf \implies\cot( {15}^{ \circ} ) =\cot( {45}^{ \circ} -  {30}^{ \circ} )  \\

• We know that –

 \\ \implies \red{ \boxed{ \bf\cot( \alpha - \beta ) =  \dfrac{ \cot( \alpha )  \cot( \beta ) + 1 }{ \cot( \beta ) -  \cot( \alpha )  }}}   \\

• So that –

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{ \cot({45}^{ \circ} )  \cot({30}^{ \circ}) + 1 }{ \cot({30}^{ \circ}) -  \cot({45}^{ \circ} )  }\\

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{(1)( \sqrt{3}) + 1 }{( \sqrt{3} -  1)  }\\

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{ \sqrt{3}+ 1 }{\sqrt{3} -  1 }\\

• Now rationalization –

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{ (\sqrt{3}+ 1)(\sqrt{3}+ 1) }{(\sqrt{3} -  1)(\sqrt{3}+ 1) }\\

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{ (\sqrt{3}+ 1)^{2}}{(\sqrt{3})^{2}  -  (1)^{2}}\\

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{ (\sqrt{3})^{2} + (1)^{2} + 2 \sqrt{3} }{3-1}\\

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{3+1+ 2 \sqrt{3} }{2}\\

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{4+ 2 \sqrt{3} }{2}\\

 \\\bf \implies\cot( {15}^{ \circ} )  =\dfrac{2(2+ \sqrt{3})}{2}\\

 \\\large \implies{ \green{{ \boxed{ \bf\cot( {15}^{ \circ} )  =2 +  \sqrt{3}}}}}\\

Answered by anshu24497
15

Converting Cot(π/24) into degrees by multiplying the angle by 180/π we can get

Cot(π/24)= cot 7.5

cotA= (1+cos2A)/sin2A

We can write

Cot (15/2)= (1+cos15°)/sin15°……………(1)

Now

cos15°= cos (45°-30°)

=cos45.cos30+sin45.sin30

=1/√2.√3/2+1/√2.1/2

=> cos 15°= (1/4) (√6 + √2)

Similarly sin15° = (1/4) (√6 - √2)

Putting these values in eq. (1)

Cot (15/2)= [1 + (1/4) (√6 + √2)] / [(1/4) (√6 - √2)] 

= (4 + √6 + √2) / (√6 - √2)

On rationalisation 

Cot (15/2)= [(4 + √6 + √2) * (√6 + √2)] / [(√6 - √2) * (√6 + √2)] 

= (4√6 + 6 + 2√3 + 4√2 + 2√3 + 2) / 4 

= (4√2 + 4√3 + 8 + 4√6) / 4 

= √2 + √3 + √4 + √6

Similar questions