prove that (1/cosecA-cotA)-(1/sinA)=(1/sinA)-(1/cosecA+cotA)
Attachments:

Answers
Answered by
305
LHS = 1/cosec A - cot A - 1/ sin A
= 1/cosec A - cot A * cosec A + cot A/cosec A + cot A - 1/sin A
= (cosec A + cot A)/(cosec^2A - cot^2A) - 1/sin A
= (cosec A + cot A)/(cosec^2A - cot^2A) - cosec A
= cosec A + cot A - cosec A
= cot A.
RHS = 1/sin A - 1/cosecA+cotA
= cosecA - (cosecA - cotA)/(cosec^2A - cot^2A)
= cosec A - (cosec A - cot A)
= cosec A - cosec A + cot A
= cot A.
LHS = RHS.
Hope this helps!
= 1/cosec A - cot A * cosec A + cot A/cosec A + cot A - 1/sin A
= (cosec A + cot A)/(cosec^2A - cot^2A) - 1/sin A
= (cosec A + cot A)/(cosec^2A - cot^2A) - cosec A
= cosec A + cot A - cosec A
= cot A.
RHS = 1/sin A - 1/cosecA+cotA
= cosecA - (cosecA - cotA)/(cosec^2A - cot^2A)
= cosec A - (cosec A - cot A)
= cosec A - cosec A + cot A
= cot A.
LHS = RHS.
Hope this helps!
Answered by
329
hello users ........
/////////////////////////////////////////////////////////////////////////////////////////////
we have to prove that:
= 
solution :-
Taking LHS:
=
=
= ( cosec A + cot A ) - cosec A .........( cosec²x - cot²x = 1)
= cot A
now
taking RHS

=
=
= cosec A - ( cosec A - cot A ) / 1 .... (cosec²x - cot²x = 1)
= cot A
Hence
LHS = RHS
Proved ........
/////////////////////////////////////////////////////////////////////////////////////////
✪✪ hope it helps ✪✪
/////////////////////////////////////////////////////////////////////////////////////////////
we have to prove that:
solution :-
Taking LHS:
=
=
= ( cosec A + cot A ) - cosec A .........( cosec²x - cot²x = 1)
= cot A
now
taking RHS
=
=
= cosec A - ( cosec A - cot A ) / 1 .... (cosec²x - cot²x = 1)
= cot A
Hence
LHS = RHS
Proved ........
/////////////////////////////////////////////////////////////////////////////////////////
✪✪ hope it helps ✪✪
Similar questions