prove that √1+cosø/1-cosø = cosecø+cotø
Answers
Answered by
0
Answer:
√1+cos∅/√1-cos∅ = coesc∅ +cot∅
LHS = √1+cos∅/√1-cos∅
By rationalising
√1+cos∅/√1-cos∅ = √(1+cos∅)×(1+cos∅)/1-co∅ × 1+cos∅)
= √(1+cos∅)²/1-cos²∅ [(a+b)(a-b) = a²-b²]
= √(1+cos∅)²/sin²∅). [ sin²∅ = 1-cos²∅]
= 1+cos∅ / sin∅
= 1/sin∅ + cos∅/sin∅
= cosec∅ + cot∅
[1/sin∅ = cosec∅, cos∅/sin∅ = cot∅]
= RHS
Hence proved
(I didn't get the second part of the question)
Answered by
0
Answer:
Step-by-step explanation:
Mark as brainliest
Attachments:
Similar questions
Math,
5 months ago
Math,
5 months ago
Social Sciences,
11 months ago
Biology,
1 year ago
Math,
1 year ago