Math, asked by shadow6629, 8 months ago

prove that 1+costheta/sin²theta=1/1-costheta​

Answers

Answered by chaitragouda8296
1

lhs =  \frac{1 + cos}{ {sin}^{2} }

 =  \frac{1 + cos}{1 -  {cos \: }^{2} }  \:  \:  \:  \: ( {sin \: }^{2}  = 1 -  {cos \: }^{2} )

 =  \frac{1 + cos}{ {1 \: }^{2}  -  {cos \: }^{2} }

 =  \frac{1 + cos}{(1 + cos)(1 - cos)}  \:  \:  \:  \: ( {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

 =  \frac{1}{1 - cos}

= RHS

Therefore ,,,,

LHS = RHS

Hence proved ....

Hope it's helpful .....

Please mark it as Brainliest ......

Similar questions