Math, asked by sujith25, 10 months ago

Prove that
1 + costheta/sintheta-sintheta/1+costheta=2cot theta

Answers

Answered by gagansl012
7

First solve the Lhs by taking the LCM u will get (1+cos theta)^2 -sin theta^2 /(sin theta)x(cos theta)

Then expand the numerator you will get

(1+cos theta)(1+cos theta)-(1-cos^2theta)/(sin theta)(1+cos theta)

Then take 1+cos theta as common in the numerator

(1+cos theta){1+cos theta-(1-cos theta)}/(Sin theta)(1+cos theta)

Then cancel 1+cos theta and open the brackets, you will get

1+cos theta-1+cos theta/sin theta

Then solve the numerator

2cos theta/sin theta

Convert it to cot (cot=cos/sin)

You will get 2cot theta which is equal to the RHS

Answered by harendrachoubay
47

\dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta, proved

Step-by-step explanation:

To prove that, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta

L.H.S. = \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta}

Taking LCM of denominator part, we get

=\dfrac{(1+\cos \theta)^2-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

Using the algebraic identity,

(a+b)^{2} =a^{2} +2ab+b^2

=\dfrac{1+\cos^2 \theta+2\cos \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

Using the trigonometric identity,

\sin^2 A=1-\cos^2 A

=\dfrac{1+\cos^2 \theta+2\cos \theta-(1-\cos^2 \theta)}{\sin \theta(1+\cos \theta)}

=\dfrac{1+\cos^2 \theta+2\cos \theta-1+\cos^2 \theta}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos^2 \theta+2\cos \theta}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos \theta(\cos \theta+1)}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos \theta}{\sin \theta}

= 2\cot \theta

= R.H.S., proved.

Thus, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta, proved

Similar questions