Prove that
1+cot theta/sin theta + 1+tan theta/cos theta = cosec theta sec² theta+sec theta cosec² theta
(using LHS/RHS method)
Spam=Report
Have a nice day ahead y'all!
Answers
Step-by-step explanation:
Given :-
[(1+Cot θ)/Sin θ] + [ (1+ Tan θ)/Cos θ]
To find :-
Prove that
[(1+Cot θ)/Sin θ] + [ (1+ Tan θ)/Cos θ] = Cosec θ Sec² θ +Sec θ Cosec²θ
Solution :-
On taking LHS
[(1+Cot θ)/Sin θ] + [ (1+ Tan θ)/Cos θ]
=>[{1+(Cosθ/Sinθ)}/Sinθ]+
[{1+(Sinθ/Cosθ}/Cos θ]
=>[{(Sinθ+Cosθ)/Sinθ}/Sinθ]+
[{(Cosθ+Sinθ)/Cosθ}/Cosθ]
=> [(Sin θ+Cos θ)/Sin² θ] +
[ (Sin θ+Cos θ)/Cos²θ]
=> (Sin θ+Cos θ)[(1/Sin²θ)+(1/Cos²θ)]
=>(Sin θ + Cos θ)[(Cos² θ + Sin² θ)/
(Sin² θ Cos² θ)]
We know that
Sin² A + Cos² A = 1
=> (Sin θ+Cos θ) [1 /(Sin²θCos²θ)]
=> (Sin θ+Cos θ) /(Sin²θCos²θ)
=>[Sinθ/(Sin²θCos²θ)]+[Cosθ(Sin²θCos²θ)]
=> [1/(Sin θCos²θ)] + [ 1/(Sin² θCos θ)]
=> Cosec θ Sec² θ + Cosec²θ Sec θ
=> Cosec θ Sec² θ +Sec θ Cosec²θ
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
[(1+Cot θ)/Sin θ] + [ (1+ Tan θ)/Cos θ]
= Cosec θ Sec² θ +Sec θ Cosec²θ
Used formulae:-
→ Sin² A + Cos² A = 1
→ Tan θ = Sin θ / Cos θ
→ Cot θ = Cos θ / Sin θ
→ 1/ Sin θ = Cosec θ
→ 1/ Cos θ = Sec θ