Math, asked by harieshrp, 1 year ago

prove that :(1+cot theta+tan theta)(sin theta -cos theta)/(sec3 theta-cosec3 theta)= sin2 theta. cos2 theta
Please help...

Answers

Answered by Anonymous
80

( 1 + cot Ф + tan Ф )( sin Ф - cos Ф )

Use cot Ф = cos Ф / sin Ф

Use tan Ф = sin Ф / cos Ф

⇒ ( 1 + cos Ф / sin Ф + sin Ф / cos Ф )( sin Ф - cos Ф )

⇒ ( sin Ф cos Ф + sin²Ф + cos²Ф )( sin Ф - cos Ф ) / sin Ф cos Ф

Use the expansion : ( a - b )( a² + ab + b² ) = a³ - b³

⇒ ( sin³Ф - cos³Ф ) / ( sec³ - cos³Ф ) ( sin Ф cos Ф )

Use sin Ф = 1/cosec Ф and cos Ф = 1/sec Ф

⇒ ( 1/cosec³Ф - 1/sec³Ф ) / ( sec³Ф - cos³Ф ) ( sinФ cosФ )

⇒ ( sec³Ф - cos³Ф )/( sec³Фcosec³Ф ) / ( sec³Ф - cos³Ф )( 1/cosecФ.1/secФ )

⇒ secФcosecФ / sec³Фcosec³Ф

⇒ 1 / sec²Фcosec²Ф

⇒ sin²Фcos²Ф


harieshrp: bro i didnt understand after that so
harieshrp: from so
harieshrp: okay i understod
harieshrp: thank you so much
Answered by Anonymous
1

1+cotx+tanx)(sinx-cosx)/sinxcosx

= cos^2x+sin^2x+cosxsinx)(sinx-cosx)/(sinxcosx)

= ( cos^3x-sin^3x)/(sinxcosx

= ( 1/cosec^2xsec^2x)

= sin^2xcos^2x

Proved

Similar questions