Math, asked by aditi202004, 11 months ago

prove that:(1+cotA-cosecA)(1+tanA+secA)=2​

Answers

Answered by Anonymous
1

We have to use the formulas :

tanA = sinA/cosA, cotA = cosA/sinA , tanAcotA = 1 and sin²A + cos²A = 1

(1+cotA-cosecA)(1+tanA+secA)

=> 1+tanA+secA+cotA+cotAtanA+cotAsecA-cosecA-cosecAtanA-cosecAsecA

=> 1+tanA+secA+cotA+1+cosecA-cosecA-secA-cosecAsecA

=> 2+tanA+cotA-cosecAsecA

=> 2+sin/cosA + cosA/sinA - 1/sinAcosA

=> (2sinAcosA+sin²A+cos²A-1)/sinAcosA

=>( 2sinAcosA+1-1)/sinAcosA

=> 2 = R.H.S.

HENCE PROVED

I hope it will be helpful for you

Mark it as brainliest and

Fóllòw☺️☺️

Similar questions