prove that :(1+cotA+tanA)(sinA-cosA)=sinA.tanA-cotA.cosA
sapna3325:
did u have to say nothing
Answers
Answered by
8
Answer:
LHS= (1+cotA+tanA)(sinA-cosA)
=sinA+sinAcotA+sinAtanA-cosA-cosAcotA-
cosAtanA
=sinA+sinAcosA/sinA+sinAsinA/cosA-cosA
-cosAcosA/sinA-cosAsinA/cosA
=sinA+cosA+sin^2A/cosA-cosA-
cos^2A/sinA-sinA
=sin^2A/cosA-cos^2A/sinA
=sinA(sinA/cosA)-cosA(cosA/sinA) ----(1)
=1/cosecA(1/cosecA/1/secA)-1/secA(1/secA/
1/cosecA)
=(1/cosec^2A)(secA)-(1/sec^2)(cosecA)
=secA/cosec^2A-cosecA/sec^2A ----(2)
=sinAtanA-cosAcotA ---------------(3)
from (1)
from 2 and 3
=RHS
Answered by
5
here is the answer...
hope it helps...^_^
hope it helps...^_^
Attachments:
Similar questions