Prove that
1+iz/1-iz=1-c/a-ib
where a, b, c, ∈ R and z is a complex number such that and a2
+ b2 + c2 = 1, and b + ic = (1 +a)z.
Answers
Answered by
0
Step-by-step explanation:
1+iz
=
1−i(b+ic)/(1+a)
1+i(b+ic)/(1+a)
=
1+a+c−ib
1+a−c+ib
=
(1+a+c)
2
+b
2
(1+a−c+ib)(1+a+c+ib)
=
1+a
2
+c
2
+b
2
+2ac+2(a+c)
1+2a+a
2
−b
2
−c
2
+2ib+2iab
=
2+2ac+2(a+c)
2a+2a
2
+2ib+2iab
(∵a
2
+b
2
+c
2
=1)
=
1+ac+(a+c)
a+a
2
+ib+iab
=
(a+1)(c+1)
a(a+1)+ib(a+1)
=
c+1
a+ib
Similar questions