English, asked by rroyyalanavyasri, 7 months ago

prove that 1/log base x xy +1/log base y xy =1​

Answers

Answered by Swarup1998
4

Let us know logarithmic formulae first:

  • log_{a}(xy)=log_{a}(x)+log_{a}(y)

  • log_{a}(x/y)=log_{a}(x)-log_{a}(y)

  • log_{y}(x)=\frac{log_{a}(x)}{log_{a}(y)},\:a>1

Step-by-step explanation:

Now L.H.S. =\frac{1}{log_{x}(xy)}+\frac{1}{log_{y}(xy)}

=\frac{1}{\frac{log_{a}(xy)}{log_{a}(x)}}+\frac{1}{\frac{log_{a}(xy)}{log_{a}(y)}}

where a>1

  • We have used the formula:
  • log_{y}(x)=\frac{log_{a}(x)}{log_{a}(y)},\:a>1

=\frac{log_{a}(x)}{log_{a}(xy)}+\frac{log_{a}(y)}{log_{a}(xy)}

=\frac{log_{a}(x)+log_{a}(y)}{log_{a}(xy)}

  • Let us use the following formula:
  • log_{a}(xy)=log_{a}(x)+log_{a}(y)

=\frac{log_{a}(xy)}{log_{a}(xy)}

=\bold{1}

= R. H. S.

\Rightarrow \frac{1}{log_{x}(xy)}+\frac{1}{log_{y}(xy)}=1

Hence proved.

Similar questions