prove that 1 minus sin square theta upon 1 + cot theta minus cos square theta upon 1 + tan theta equals to sin cos
Answers
Answered by
8
Answer:
Step-by-step explanation:
1 - sin²θ/1 + cotθ - cos²θ/1 + tanθ
= (sin²θ + cos²θ) - sin²θ.tanθ/tanθ+ 1 - cos²θ/1 + tanθ
= (sin²θ + cos²θ)(tanθ+ 1) - sin²θ.tanθ - cos²θ / 1 + tanθ
= sin²θtanθ + cos²θtanθ +sin²θ + cos²θ - sin²θ.tanθ - cos²θ / 1 + tanθ
= cos²θtanθ +sin²θ / 1 + tanθ
= cos³θtanθ + sin²θcosθ / cosθ + sinθ
= cos³θ (sinθ/cosθ) + sin²θcosθ / cosθ + sinθ
= cos²θsinθ + sin²θcosθ/cosθ + sinθ
= cosθsinθ(cosθ + sinθ)/cosθ + sinθ
= cosθsinθ
= R.H.S
Hence proved.
Similar questions
Business Studies,
6 months ago
English,
6 months ago
Math,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago
Business Studies,
1 year ago