Math, asked by Durgesh0719, 9 months ago

Prove that (1 +sec A) /sec A = sin2A /( 1 – cosA).​

Answers

Answered by TheValkyrie
6

Answer:

Step-by-step explanation:

\Large{\underline{\underline{\bf{Given:}}}}

\dfrac{1+sec\:A}{sec\:A} =\dfrac{sin^{2}\:A }{1-cos\:A}

\Large{\underline{\underline{\bf{To\:Prove:}}}}

LHS = RHS

\Large{\underline{\underline{\bf{Solution:}}}}

→ Consider the LHS of the equation,

   \sf {LHS = \dfrac{1+sec\:A}{sec\:A} }

          \sf{ =\dfrac{1+\dfrac{1}{cos\:A} }{\dfrac{1}{cos\:A} } }

→ Cross multiplying,

          \sf{=\dfrac{\dfrac{cos\:A+1}{cos\:A} }{\dfrac{1}{cos\:A} }}

→ Cancelling cos A

         =\sf{cos\:A+1---(1)}

→ Now consider the RHS of the equation,

  \sf{RHS=\dfrac{sin^{2}\:A }{1-cos\:A}}

         \sf{=\dfrac{1-cos^{2}\:A }{1-cos\:A} }

        \sf{=\dfrac{(1+cos\:A)(1-cos\:A)}{1-cos\:A}}

→ Cancelling 1 - cos A

       \sf{=1+cos\:A---(2)}

→ From equation 1 and 2 we see that,

  LHS = 1 + cos A

  RHS = 1 +  cos A

→ Hence LHS = RHS

\Large{\underline{\underline{\bf{Identities\:used:}}}}

→ sec A = 1/cos A

→ sin² A = 1 - cos² A

→ a² - b² = ( a+ b) ( a- b )

Similar questions