Math, asked by Vinod8555, 1 year ago

Prove that (1+secθ)/secθ=sin^2θ/(1-cosθ)

Answers

Answered by Pitymys
2

Use the identities,

 \sec ^2 \theta -1=\tan^2 \theta

 (a+b)(a-b)=a^2-b^2

Now,

 LHS=\frac{1+\sec \theta}{\sec \theta} \\<br />LHS=\frac{1+\sec \theta}{\sec \theta} =\frac{(1+\sec \theta)(\sec \theta-1)}{\sec \theta(\sec \theta-1)} \\<br />LHS=\frac{1+\sec \theta}{\sec \theta} =\frac{\sec^2 \theta -1}{\sec^2 \theta(1-\cos \theta)}\\<br />LHS=\frac{1+\sec \theta}{\sec \theta} =\frac{1-\cos^2 \theta }{1-\cos \theta}\\<br />LHS=\frac{1+\sec \theta}{\sec \theta} =\frac{\sin^2 \theta }{1-\cos \theta}=RHS

Similar questions