Math, asked by Gourav2896, 1 year ago

Find the value of : sin10sin50sin70sin60

Answers

Answered by Pitymys
0

Use the identities,

 \sin (90^o-\theta)=\cos \theta .

 \sin 2\theta=2\sin \theta \cos \theta

Usin the above identity,

 \sin 10^o=\cos 80^o\\<br />\sin 50^o=\cos 40^o\\<br />\sin 70^o=\cos 20^o

Now,

 \sin 10^o \sin 50^o \sin 70^o \sin 60^o=\cos 80^o\cos 40^o\cos 20^o \sin 60^o\\<br />\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{2\sin 20^o}\cos 80^o\cos 40^o(2\sin 20^o\cos 20^o) \sin 60^o \\<br />\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{2\sin 20^o}\cos 80^o\cos 40^o \sin 40^o \sin 60^o \\<br /><br />

 \sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{8\sin 20^o}\cos 80^o(2\cos 40^o \sin 40^o) \sin 60^o \\<br />\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{8\sin 20^o}\cos 80^o \sin 80^o\sin 60^o \\<br />\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{16\sin 20^o}2\cos 80^o \sin 80^o\sin 60^o \\<br />\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{16\sin 20^o}\sin 160^o\sin 60^o \\

 \sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{16\sin 20^o}\sin 20^o\sin 60^o \\<br />\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{16}\sin 60^o \\<br />\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{16}(\frac{\sqrt{3}}{2})\\  <br />\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{\sqrt{3}}{32}

Similar questions