Math, asked by afreenahmedhuss5838, 1 year ago

How to prove sec^4A-sec^2A=tan^4A+tan^2A

Answers

Answered by Pitymys
1

Use the identities,

 \sec^2 A=1+\tan ^2 A .

 (a+b)^2=a^2+2ab+b^2

Here,

 LHS=\sec^4 A-\sec^2 A=(1+\tan ^2 A)^2-1-\tan ^2 A\\<br />LHS=\sec^4 A-\sec^2 A=\tan^4 A+2\tan^2 A+1-1-\tan ^2 A\\<br />LHS=\sec^4 A-\sec^2 A=\tan^4 A+\tan^2 A=RHS

The proof is complete.

Similar questions